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ABSTRACT

Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the

subsequent melt year has received considerable research focus. Studies have identified enhanced poleward

atmospheric transport ofmoisture and heat during spring, leading to increased emission of longwave radiation

to the surface. Simultaneously, these studies ruled out the role of shortwave radiation as an effective pre-

conditioning mechanism because of relatively weak incident solar radiation, high surface albedo from sea ice

and snow, and increased clouds during spring. These conclusions are derived primarily from atmospheric

reanalysis, which may not always accurately represent the Arctic climate system. Here, top-of-atmosphere

shortwave radiation observations from a state-of-the-art satellite sensor are compared with ERA-Interim

reanalysis to examine similarities and differences in the springtime absorbed shortwave radiation (ASR) over

the Arctic Ocean. Distinct biases in regional location and absolute magnitude of ASR anomalies are found

between satellite-based measurements and reanalysis. Observations indicate separability between ASR

anomalies in spring corresponding to anomalously low and high ice extents in September; the reanalysis fails

to capture the full extent of this separability. The causes for the difference in ASR anomalies between ob-

servations and reanalysis are considered in terms of the variability in surface albedo and cloud presence.

Additionally, biases in reanalysis cloud water during spring are presented and are considered for their impact

on overestimating spring downwelling longwave anomalies. Taken together, shortwave radiation should not

be overlooked as a contributing mechanism to springtime Arctic atmospheric preconditioning.

1. Introduction

As the Arctic climate undergoes rapid changes, it is

crucial to improve the process-level understanding re-

garding the mechanisms and feedbacks that favor the

observed changes. Sea ice extent and volume have

shown a nearly continuous negative trend since satellite

records began (e.g., Kwok and Rothrock 2009; Kwok

et al. 2009; Comiso 2012; Cavalieri and Parkinson 2012;

Parkinson and DiGirolamo 2016). The reduction of re-

flective and insulating sea ice and overlying snow cover

is trending toward a larger fraction of darker (less re-

flective) and relatively warmer open ocean surfaces

more susceptible to absorbing shortwave radiation

(Kashiwase et al. 2017). The abundance of multiyear sea

ice is being replaced by thinner first year ice more prone

to earlier melt at the onset of the sea ice melt season

(e.g., Serreze and Stroeve 2015; Mortin et al. 2016).

Anomalies in atmospheric circulation are impacting the

heat and moisture content that is transported poleward

over the thinning sea ice (e.g., Graversen et al. 2011;

Serreze and Stroeve 2015; Sedlar and Tjernström 2017).

Subsequently, radiative and turbulent fluxes over the ice

become altered, and a number of feedback mechanisms

at the surface and within the atmosphere can further

contribute to the observed amplified Arctic warming

(e.g., Pithan and Mauritsen 2014).

Atmospheric preconditioning over the Arctic exam-

ines and quantifies the impact of processes in the at-

mosphere during winter, spring, and early summer that

effectively modulate the extent of melt for snow and sea

ice. Strictly considering the atmosphere, these processes

include anomalies in the convergence of heat and

moisture, alterations to the lower-tropospheric static

stability and subsequent dynamic surface heat fluxes,
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cloud cover. To quantify these individual and in-

terrelated contributions, Kapsch et al. (2013) identified

years with anomalously low sea ice extent (SIE) in

September, called low ice years (LIYs), when Arctic sea

ice reaches its minimum. For these years, atmospheric,

radiative, and turbulent components are detrended and

their anomalies during the spring months preceding this

September LIY anomaly are composited and contrasted

with those when the September SIE is anomalously high

[high ice years (HIYs)]. Identifying September LIY and

HIY anomalies is achieved by calculating standardized

anomalies of SIE, essentially detrending the SIE data

record and identifying years when it surpasses a stan-

dardized anomaly threshold, here larger than 60.5.

Figure 1a highlights the interannual variability of the

September SIE standardized anomaly time series from

monthly passive microwave imager measurements of

SIE generated by the NASA Team algorithm (e.g.,

Cavalieri et al. 1996).

In general, the extent of sea ice during spring is not a

meaningful predictor of the subsequent ice extent come

September (Petty et al. 2017). For example, in Figs. 1b–g,

SIE standardized anomalies for March through August

are calculated and plotted against their subsequent

September SIE standardized anomalies for HIYs

(blue) and LIYs (red) over the period 1979–2016.

Considerable variability is evident, as both LIY and

HIY anomalies fluctuate monthly between anoma-

lously low and high ice extents, even though their

September values classify these years as robust anom-

alies. Correlation coefficients during March through

May highlight this variability and indicate that the

monthly SIE anomaly and that of September are often

weakly anticorrelated. It is not until June or July that

the monthly anomalies in SIE begin to align with their

September classification of either HIY or LIY. Based

on these later correlation alignments, the focus of this

study will be on the spring and early summer months

spanning from March through June.

Following the results of Kapsch et al. (2013), several

studies have analyzed thewinter and springmonths in an

effort to characterize important anomalies in the at-

mosphere that may be responsible for preconditioning

and contributing to anomalies in September Arctic SIE.

An emerging consensus from these studies is that LIYs

tend to experience positive flux anomalies of surface

downwelling longwave (LWD) radiation during spring,

while downwelling shortwave (SWD) radiation anom-

alies were negative (Kapsch et al. 2013, 2014; Cox et al.

2016; Mortin et al. 2016). Liu and Key (2014) and Cao

et al. (2017) extended the seasonal analysis to winter

months and found that anomalous LWD fluxes were

effective in preconditioning the sea ice already in winter

(SWD is absent during the polar winter). Observational

studies on the Arctic ice pack have shown that longwave

fluxes are critical in modifying the surface energy bud-

get, the surface skin temperature, and the heat transfer

through the snow and sea ice pack; these are closely

connected to the structure and microphysical properties

of overlying clouds (Shupe and Intrieri 2004; Sedlar et al.

2011; Persson 2012). Sedlar et al. (2011) demonstrated

that enhanced LWD from supercooled liquid-bearing

clouds also has the potential to alter the lower-tropospheric

stability structure, which in turn can impact the di-

rection and magnitude of near-surface turbulent fluxes.

Thus, longwave radiation, through its important impact

on the surface energy budget, is a physically plausible

mechanism contributing to winter and spring sea ice

preconditioning.

The role of shortwave radiation anomalies as a

mechanism contributing to spring and early summer

preconditioning has also been examined. Kapsch et al.

(2013, 2016) andMortin et al. (2016) correlated negative

SWDanomalies during spring with higher ice extent and

later melt season onset. However, Choi et al. (2014),

using satellite observations of absorbed shortwave ra-

diation (ASR), found that anomalies in shortwave ra-

diation already during May were significantly correlated

with the seasonal SIE minimum; covariance lead–lag

analysis between absorbed shortwave radiation and SIE

pointed toward the importance of shortwave anomalies

in late spring and early summer as an intricate driver of

the seasonal sea ice melt evolution. Cox et al. (2016)

argue that both longwave and shortwave precondition-

ing of sea ice may work in unison, concluding that

anomalies in surface radiation are instead a matter of

timing. Correspondingly, a modeling study by Schröder
et al. (2014) found a strong negative correlation between

the fraction of melt pond occurrence in late spring and

the SIE in September; this suggests a decreased surface

albedo and increased shortwave absorption may con-

tribute to an enhanced ice-albedo feedback. Kashiwase

et al. (2017) described a situation where increased di-

vergence of sea ice in areas commonly covered by land-

fast ice can result in increased open water fraction and

enhanced shortwave radiation absorption by the less

reflective open water areas.

Conclusions drawn regarding Arctic spring pre-

conditioning mechanisms generally rely on atmospheric

reanalysis datasets, or a blend of spaceborne observa-

tional datasets and reanalysis. Therefore these studies

pivot on the accurate representation of atmospheric,

radiative, and turbulent processes in reanalysis and

global climatemodel (GCM) simulations.Many of these

processes in reanalysis and GCMs are known to contain

biases over the high-latitude Arctic, where observational
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constraints of physical processes are sparse, particularly

in the representation and distribution of surface albedo,

cloud fraction, cloud phase, cloud-radiative interactions,

near-surface turbulent heat fluxes, and lower-tropospheric

thermodynamic structure (Tjernströmet al. 2008;Karlsson

and Svensson 2013; deBoer et al. 2014;Wesslén et al. 2014;
Sotiropoulou et al. 2016).

In this study, the focus turns to state-of-the-art satel-

lite observations at the top of the atmosphere (TOA)

measuring the amount of shortwave radiative energy

absorbed within the climate system over the Arctic

Ocean from 2000 to 2016. Following Choi et al. (2014),

the purpose is to quantify the observed relationship

between ASR and physical processes that critically im-

pact ASR from March through June (early spring to

early summer). Simultaneously, these observed re-

lationships are compared with ERA-Interim reanalysis

through a comparison of ASR and variables impacting

ASR for LIYs withHIYs during the observation records

from 2000 to 2016. Because ERA-Interim is frequently

used for Arctic studies, it is analyzed in unison to un-

derstand the robustness in sea ice atmospheric pre-

conditioning results from studies that have applied

ERA-Interim fields.

2. Data and methodology

a. Observations and reanalysis

This study centrally focuses on ASR at the TOA for

one straightforward reason: this variable is accurately

observed from space, and does not rely on a priori as-

sumptions and radiative transfer models to estimate it.

Observations of ASR during spring and early summer

(March through June) over the years 2000 to 2016 are

analyzed from CERES (Clouds and the Earth’s Radiant

Energy System). CERES directly observes incident

FIG. 1. (a) September SIE standardized anomalies computed for 1979–2016. (b)–(g)Monthly

(March through August) SIE standardized anomalies plotted against the corresponding

September SIE standardized anomalies for the 12 yr designated as (red) LIYs and 14 yr

designated as (blue) HIYs (years where September SIE standardized anomaly is .60.5

standardized value: gray dashed lines in panel Fig. 1a). Correlation coefficient values between

the monthly and September SIE standardized anomalies are presented in each panel.
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shortwave radiation entering, and the outgoing short-

wave radiation exiting, through the TOA in the spectral

range of 0.3 to 5mm at an accuracy of 5% (Loeb et al.

2009). Monthly averaged CERES EBAF-TOA (En-

ergy Balanced and Filled) edition 2.8 data at spatial

resolution of 18 by 18 of incoming and outgoing short-

wave radiation are combined to compute the ASR

(ASR 5 SWDTOA 2 SWUTOA) for the Arctic Ocean

domain. This domain covers only ocean grids across the

entire Arctic Ocean and the seas surrounding the pe-

riphery of the Arctic; the domain extent can be seen

in Fig. 2.

Shortwave radiation is critically dependent upon the

surface albedo and the presence and optical properties

of cloud cover. Here, observations of surface albedo

from the Climate Monitoring Satellite Application Fa-

cility (CM SAF) Cloud, Albedo, and Surface Radiation

dataset fromAVHRR data, second edition (CLARA-A2;

Karlsson et al. 2017) are analyzed. The dataset uses ho-

mogenized radiances from passive AVHRR sensors to

estimate the monthly averaged terrestrial black-sky sur-

face albedo [see Riihelä et al. (2013) for retrieval details].
Over the polar region, surface albedo measurements are

available on an equal-area grid of 25km2 from 1982 to

2015; here only the overlap years of 2000–15 are analyzed.

Validation over snow and ice surfaces reports that the

CLARA-A2 albedo measurements are accurate at typi-

cally 3%–15% (Karlsson et al. 2017).

Observations of cloud fraction are analyzed from the

ModerateResolution ImagingSpectroradiometer (MODIS)

onboard the Aqua satellite since 2002 (King et al. 2003;

Platnick et al. 2003). Level-3 monthly averaged cloud

fractions from MODIS Collection 6 are available at a

global resolution of 18 3 18, and here they are ana-

lyzed from 2003 to 2015. Cloud fraction from the ac-

tive CALIOP lidar onboard the CALIPSO satellite

(Winker et al. 2009) is also analyzed for its overlapping

data record period of 2007–15. Monthly averaged cloud

fraction is obtained from the GCM-Oriented CALIPSO

Cloud Product (GOCCP) version 2.9 (Cesana and

Chepfer 2013). Additionally, a hybrid dataset of cloud

water path and surface downwelling radiation observa-

tions described by Van Tricht et al. (2016) is analyzed

to understand the background Arctic water path state

and the associated surface radiative fluxes. This dataset

builds from CloudSat and CALIPSO active profile re-

trievals of cloud microphysical properties (Stephens

et al. 2008), which are then used as input to a radiative

transfer model to compute radiative flux profiles and

surface values (CloudSat 2B-FLXHR-lidar; Henderson

et al. 2013). These observed profiles of microphysics

and radiative fluxes have been optimized for the high-

latitude Arctic region, improving on the phase partition-

ing between liquid and ice hydrometeors, and ultimately

improving the radiative fluxes (Van Tricht et al. 2016).

This dataset is only available for 2007–10, and thus is only

FIG. 2. Spring and early summermonthly spatial detrended anomalies inASR for LIYs2HIYs (Wm22), showing (top) CERES observed

ASR anomalies differences and (bottom) ASR anomalies for ERA-I, for (a),(b) March, (c),(d) April, (e),(f) May, and (g),(h) June.
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used here to characterize the background state of ob-

served cloud water paths and radiation.

An aim of this study is to understand the capacity and

potential limitations of the commonly used European

Centre for Medium-RangeWeather Forecasts (ECMWF)

interim reanalysis (ERA-Interim, hereinafter ERA-I; Dee

et al. 2011) for applications related to the ASR during

spring over the Arctic Ocean domain. As mentioned

above, ERA-I has been the trusted dataset by various

studies in identifying correlations between springtime ra-

diative flux anomalies and late summer Arctic sea ice ex-

tent (Graversen et al. 2011; Kapsch et al. 2013; 2014;

Cox et al. 2016; Mortin et al. 2016). Here, 6-h rean-

alyzed fields on an equal-angle spatial resolution of

0.758 are averaged to monthly mean values. Similar to

the state-of-the-art satellite observations, ERA-I var-

iables analyzed include TOAASR, surface albedo, and

cloud fraction. ERA-I sea ice albedo is essentially de-

termined as a time-varying climatological value

(ECMWF 2008a) based on bare sea ice and dry snow-

covered sea ice albedo values determined by Ebert and

Curry (1993); information regarding sea ice concen-

tration is assimilated from passive microwave satellite

measurements (ECMWF 2008b). Additionally, surface

LWD and SWD from the reanalysis are analyzed in

unison with cloud liquid and ice water path values in an

effort to characterize the relationship between clouds

and downwelling radiative fluxes.

b. Analysis methodology

Introduced in section 1, standardized anomalies of

September SIE are computed from the full National

Snow and Ice Data Center (NSIDC) observational re-

cord during 1979 to 2016. The years are separated into

LIYs and HIYs if their 2000 to 2016 September stan-

dardized SIE anomaly was greater than 60.5 (Fig. 1a).

For the analyzed span of years, this resulted in 5 years

determined as LIY anomalies (2007, 2008, 2010, 2011,

and 2012) and 7 as HIY anomalies (2000, 2001, 2003,

2004, 2006, 2013, and 2014). Spring and early summer

anomalies of ASR, surface albedo, and cloud fraction

for these two groups of years are computed by de-

trending the 2000 to 2016 record for each month. The

analysis then compares monthly composites of de-

trended anomalies for all LIYs and HIYs for ERA-I

reanalysis and the different observations.

3. Results

a. ASR anomalies

Detrended anomaly composite differences (all LIYs2
all HIYs) in ASR reveal interesting differences and

similarities comparing the CERES observations with

ERA-I (Fig. 2). Near the landmasses and around the

periphery of the sea ice edge, observations and re-

analysis are in agreement regarding positive anomalies

(increase) in ASR during March through May of LIYs

(Figs. 2a–f). The anomaly differences are smallest in

March, increasing in magnitude through the remainder

of the spring and early summer months. Differences

between observed and reanalysis ASR anomalies

emerge in the regional extent and absolute magnitude.

Positive ASR anomalies around the Arctic Ocean pe-

riphery are generally larger and their spatial extent is

greater in the observations compared to ERA-I; this is

especially the case around the Eurasian landmass, the

western Beaufort Sea, and near the Canadian archi-

pelago (Figs. 2a–f). Likewise, ERA-I captures weak

but negative ASR anomalies during LIYs across much

of the central Arctic Ocean that are in disagreement

with CERES observations during March and April

(Figs. 2a–d).

By June, very large differences in ASR anomalies exist

between CERES and ERA-I (Figs. 2g,h). Observations

show large positive anomalies exceeding 112Wm22

over much of the ocean domain, whereas ERA-I positive

ASR anomalies are broadly weaker and lack similar

spatial extent; they even indicate a large swath of nega-

tive anomalies over the eastern Arctic Ocean. The

strength and northward extent of negative ASR anoma-

lies over the Greenland and Barents Seas is also more

pronounced in ERA-I relative to CERES.

Monthly-integrated ASR anomalies over the entire

Arctic Ocean domain are compared for CERES (full

colors) and ERA-I (light colors) in Fig. 3. Observations

(black) indicate a steady increase and separability in

ASR between LIYs and HIYs through spring and early

summer, from 0.25Wm22 up to 12Wm22 (note ordi-

nate limited to 7Wm22). Conversely, the reanalysis

only reveals integrated, Arctic-wide positive anomalies

in LIY–HIYASRduringApril andMay (gray), in which

the separability of these anomalous LIY and HIY states

is a factor of 2 smaller than observed.

Detrended anomalies in ASR for LIYs (reds) and

HIYs (blues) are also shown for each month. The LIY

anomalies in ASR during April are slightly positive and

of similar magnitude in observations and reanalysis.

However by May, observations indicate nearly a factor

of 2 greater ASR compared to reanalysis. Cumulatively,

the observed anomalies in LIY ASR for March through

May suggest an additional 2.34Wm22 of absorbed

shortwave radiation, compared to 1.33Wm22 for ERA-I.

The positive anomalies in LIY ASR persist into June,

where the observed anomaly is16.5Wm22 while ERA-I

is slightly negative.
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Anomaly differences between observations and re-

analysis for HIY ASR (Fig. 3, blues) are also intriguing.

ERA-I generally fails to capture the extent of increasing

negative anomalies in ASR observed by CERES as

spring evolves. In fact, ERA-I has slightly positive

anomalies in HIY ASR for both March and June. Even

when observations and reanalysis agree on negative

ASR anomalies during April and May, the magnitude is

still underestimated by a factor of 3 to 4. These results

suggest that the variability between LIYs and HIYs is

systematically underestimated in ERA-I, and thus a

robust signal inASR differences in spring–early summer

may be artificially absent in the reanalysis.

b. Year to year variability in radiation for LIYs

The variability between domain-integrated LIY and

HIY ASR (Fig. 3) is closely related to the spatial vari-

ability and magnitude differences in ASR anomalies

between observations and reanalysis shown in Fig. 2. To

examine yearly variability, detrended anomalies in

ERA-I LWD and SWD radiation for all five April LIYs

are shown as an example (Fig. 4). Except for 2008 and

2012, large positive anomalies in LWD were present

across a majority of the Arctic Ocean (Fig. 4a). Analo-

gously, the regions with positive (negative) LWD

anomalies also reveal distinct negative (positive) SWD

anomalies (Fig. 4b). This inverse relationship is consis-

tent with enhanced cloudiness during LIYs, which acts

to shield the surface from shortwave radiation and at the

same time enhance the longwave reemitted back to the

surface. However, the regional extent of the down-

welling surface radiation anomalies is not consistent

from year to year. This indicates that atmospheric

circulation anomalies, such as enhanced or dampened

meridional moisture convergence (Kapsch et al. 2013),

are important in determining the location of anomalous

fluxes.

Year to year variability in the geographic location and

magnitudeofASRanomalies betweenERA-I andCERES

is even larger.TheLIYASRanomalydifferences (ERA-I2
CERES) illustrate the regions across the Arctic where

the reanalysis is exaggerating (red contours) or under-

representing (blue contours) ASR relative to observed

(Fig. 4c). It is apparent that deficits in surface SWDare not a

prerequisite for a reduction in ASR in the reanalysis. For

example, in 2007, 2010, and 2011 the ASR anomaly differ-

ences are positive and considerably larger than observed

over regions that experienced broad coverage of negative

(positive) SWD (LWD) anomalies. Alternatively, during

2008, CERES ASR anomalies were larger than ERA-I

across much of the domain. This year-to-year spatial vari-

ability results in an April anomaly composite that fails to

fully reflect the rather large regional anomaly differences

that exist between the observations and reanalysis (Fig. 4c,

bottom right).

c. ASR and surface albedo anomalies

In Fig. 5, theApril through June evolution ofASR and

surface albedoanomalydifferences (ERA-I2 observations)

are shown for the LIYs. Since the amount of ASR at a

particular location will be influenced by the local surface

albedo, the evolution of ASR and albedo anomalies are

examined together.

Aweak signal emerges for theLIYs ofApril (Figs. 5a,b),

where the positive anomaly differences in ASR (more

anomalous ASR in ERA-I than CERES) (Fig. 5a) tend to

FIG. 3. Monthly Arctic Ocean domain-averaged detrended ASR anomaly differences

(LIYs 2 HIYs) for CERES observations (black) and ERA-I reanalysis (gray). Individual

LIY andHIY detrendedmonthlyASR anomalies for CERES are shown as red and blue bars,

respectively; correspondingly, the individual LIY andHIY detrended monthly ASR anomalies

in ERA-I are shown as light red and light blue bars, respectively. All values in Wm22.
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match with negative anomaly differences in albedo (lower

albedo in ERA-I than CLARA-A2) (Fig. 5b). Likewise,

regions where the differences in ASR anomalies are neg-

ative (more ASR in CERES than ERA-I) are broadly

consistent with ERA-I albedo anomalies larger than the

observed anomalies. This relationship becomes stronger

and more distinct in May (Figs. 5c,d) and June (Figs. 5e,f)

when the absolute magnitude of both ASR and albedo

anomalies become larger and more disparate between the

reanalysis and observations.

Another important signal in the observations, which is

not fully present in ERA-I, is the additional ASR that

occurs around the periphery of the Eurasian Arctic

coastline. Initially in April this signal is weak and varies

from year to year (Fig. 5a). However by May, the indi-

vidual seas bordering the Eurasian continent exhibit

relatively large negative ASR anomaly differences

(CERESASR anomalies greater than ERA-I) (Fig. 5c),

and these regions coincide with higher (positive) surface

albedo anomalies in the reanalysis compared to obser-

vations; this trend continues and amplifies across much

of the Arctic Ocean domain in June, coincident with

excessively large surface albedo anomalies in ERA-I

(Figs. 5e,f). The seas bordering the Eurasian continent

are covered by thinner, first year sea ice. Observational

trends show that the spatial extent of this first year ice is

increasing (Kwok et al. 2009; Comiso 2012). The trans-

mittance of solar radiation through first year sea ice can

be up to 3 times larger than multiyear ice, which may be

increasing the ocean storage of heat through increased

solar absorption (Nicolaus et al. 2012), especially in the

presence of surface melt pond formation (Light et al.

2015). Ocean uptake of solar radiation may then be

consumed by the ice through basal melt processes

(Nicolaus et al. 2012), further exacerbating sea ice melt.

Differences in the ASR and albedo anomalies between

reanalysis and observations indicate that the amount of

solar radiation absorption during spring and early sum-

mer, especially across regions susceptible to seasonal ice

melt, is likely underestimated in ERA-I. The climato-

logical values of albedo artificially assigned to sea ice

coverage in ERA-I are likely inhibiting a feedback be-

tween albedo and shortwave radiation variability. Ad-

ditionally, it is apparent in Fig. 5 that the year to year

FIG. 4. (a) (left to right) The 2007 to 2012 variability in the April LIY detrended anomalies (Wm22) in ERA-I surface downwelling

longwave (LWD) and the composite of all 5 LIYs for April. (b),(c) As in (a), but for the shortwave (SWD) radiation and the detrended

anomaly differences in ASR for ERA-I2 CERES observations For (c), warmer (cooler) colors indicate that detrended ASR anomalies

from ERA-I are overestimated (underestimated) relative to CERES observations.
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variability in the anomaly differences is considerably

larger than composited anomaly differences (rightmost

column), as well as being considerably larger than the

LIY 2 HIY anomaly composites shown in Fig. 2.

d. Observed and reanalysis covariability in ASR and
surface albedo

To test how ASR anomalies vary with surface albedo,

the covariance and linear regression statistics were

computed from the spatially resolved LIY anomalies.

The detrended anomalies inASR and albedo fromApril

through June for each of the five LIYs identified are

combined in chronological order, and the covariance

and linear regression are then computed. These statistics

provide ameasure of the relationship between these two

variables through the spring months, which is important

to assess whether anomalies in a preceding month are

preconditioning the anomalies for a subsequent month.

FIG. 5. As in Fig. 4, but for monthly evolution of (a),(c),(e) ASR and (b),(d),(f) surface albedo (ALB) anomaly differences for (a),(b)

April, (c),(d)May, and (e),(f) June, respectively, Anomaly differences are defined as ERA-I2 observation (OBS).March is excluded from the

analysis because the solar zenith angle constraints on the retrieval of CLARA-A2 surface albedo limit data coverage north of 748N for this

month. ASR anomaly differences are in Wm22; ALB anomaly differences are in percent (%).
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Covariance between albedo and ASR (Figs. 6a,b) in-

dicates that both observations and reanalysis capture the

analog behavior of these anomalies (negative albedo

anomalies collocate with positive ASR anomalies in

time). Additionally, ERA-I captures the ‘‘hotspots’’

found in the observations of enhanced covariance

around the periphery of the Arctic domain. However,

they differ in their poleward extent. Negative covariance

in the observations extends farther poleward, especially

across the Laptev and East Siberian Seas, and north of

the Beaufort Sea into the central Arctic. Corresponding

linear regression of ASR with surface albedo anomalies

(Figs. 6c,d) highlights these same regions where co-

variance differences are largest between observations

and reanalysis. Across much of the Pacific Arctic do-

main, observed linear regressions are $1Wm22 per

change in unit albedo (%) compared to ERA-I.

e. Clouds and radiation

An accurate representation of cloud cover will play a

crucial role in the radiative energy fluxes. In Fig. 7, ac-

tive (CALIPSO-GOCCP 2007–15, black) and passive

(MODIS 2003–15, gray) satellite sensors show a con-

sistent increase in domain-averaged cloud fraction from

spring to early summer; the active sensor is very sensi-

tive to cloud hydrometeors and does not rely on solar

and infrared signal separability between cloud and sur-

face in its cloud masking like the passive sensor; thus,

more clouds are seen by the lidar sensor in theCALIPSO

GOCCP record that are artificially designated as clear

sky by the passive MODIS sensor. The observations

suggest the Arctic region is generally more frequently

cloud covered as opposed to cloud free. However ERA-I

cloud fractions during spring generally do not fall below

85%. The reanalysis (magenta) clearly overestimates

cloud cover during March and April, with even a slight

decreasing trend in total cloud fraction through the sea-

son. The CALIPSO satellite orbit inhibits observations

north of 828N, so themonthly cloud fractions over the full

Arctic Ocean domain from MODIS observations and

ERA-I are shown as dashed lines. The differences in the

domain coverage yield relatively small cloud fraction

differences and their temporal trends are consistent.

However MODIS does report slightly lower (2%–4%)

cloud fractions when including theArctic Ocean poleward

of 828N.

Despite the low bias of ;10% for MODIS monthly

cloud fraction relative to CALIPSO, its length of data

record (here 2003–15) and full Arctic spatial coverage

make it useful to study the systematic differences in

cloud fraction compared to ERA-I. Cloud fraction de-

trended anomaly differences for LIYs 2 HIYs are

shown in Figs. 8a–h. It is apparent from comparison that

observed and reanalysis cloud fraction anomalies lack

consistency in the spatial distribution, as well as the

magnitude, of the anomalies. In May and June, MODIS

suggests that LIYs are characterized by a lower presence

FIG. 6. Spatial distribution of the (a) observed and (b) reanalysis

covariance (Wm22 %) between detrended anomalies in surface

albedo (ALB) and ASR for April through June for all LIYs. (c),

(d)The spatial distribution of the linear regression slope (Wm22%21)

when detrended anomalies of ASR are regressed onto the de-

trended anomalies of ALB for April through June for all LIYs. In

all panels, data are masked (values 5 0) where the correlation of

the linear regression between the respective datasets is in-

significant (p . 0.05).

FIG. 7. Monthly averaged Arctic Ocean cloud fraction (%) from

CALIPSOGOCCP (black), MODIS (gray), and ERA-I (magenta).

Cloud fractions for the domain area coverage of CALIPSO

GOCCP (,828N) forMODIS and ERA-I are shown in solid lines;

the full Arctic Ocean domain averages for these datasets are in

dashed lines.
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of cloudiness across much of the western Arctic

(Figs. 8c,d). ERA-I mimics this cloud reduction in May

(Fig. 8g), but by June an opposing increase in cloudiness

during LIYs takes over (Fig. 8h).

The radiative impact of these cloud anomalies on

ASR can be examined through the cloud radiative effect

(CRE) at the TOA. The term CREASR [Eq. (1)] is cal-

culated by subtracting the ASR during cloud-free con-

ditions from ASR during all sky conditions:

CRE
ASR

5ASR
AllSky

2ASR
ClearSky

. (1)

The spatial distribution of detrended CREASR anoma-

lies for LIYs 2 HIYs are shown in Figs. 8i–p, where

positive anomalies represent increased ASR during

LIYs compared to HIYs. It is readily apparent that

anomalous CREASR corresponds intimately with the

location and magnitude of cloud fraction anomalies

(Figs. 8a–h). For March and April across much of the

central Arctic, relatively weak but positive anomalies in

CREASR are observed during LIYs, whereas for ERA-I

broader coverage of positive cloud fraction anomalies

yields weakly negative CREASR anomalies. The broad

region of increased cloud fraction and reduced CREASR

for April (Figs. 8f,n) is consistent with the anomalously

large (small) surface LWD (SWD) during LIYs shown

in Figs. 4a and 4b. By May and June, observed re-

ductions in cloud fraction (Figs. 8c,d) systematically

FIG. 8. Detrended cloud fraction anomaly (%) composite differences (LIYs 2 HIYs) from (a)–(d) MODIS and (e)–(h) ERA-I, and

detrended CREASR [see Eq. (1)] anomaly (Wm22) composite differences (LIYs2HIYs) for (i)–(l) CERES and (m)–(p) ERA-I. Rows

represent each month from top to bottom: March, April, May, and June.
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result in strong, positive anomalies in CREASR (Figs. 8k,l);

the extent of the reanalysis to capture these anomalies

appears to be largely biased in its overrepresentation of

cloud, and a general lack of LIY versus HIY variability in

cloud fractional anomalies.

f. Cloud microphysics and downwelling surface
radiation

Besides total cloud fraction being important for ASR,

the microphysical structure of these clouds is also im-

portant. Here, Arctic observations of liquid and ice

water content profiles are retrieved from a synergy be-

tween the radar and lidar instruments onboardCloudSat

and CALIPSO over the period 2007–10. The micro-

physical profiles are used as input into a radiative

transfer model, providing estimates on the downwelling

surface radiative fluxes. This dataset has been optimized

for Arctic atmospheric conditions (Van Tricht et al.

2016), improving on the retrieved microphysical and

radiation profiles of the current version R04 2B-

FLXHR-lidar (L’Ecuyer et al. 2008; Henderson et al.

2013). Here, the liquid and ice water content profiles are

integrated vertically and provide the total atmospheric

column burden of liquid water path (LWP) and ice

water path (IWP).

In Fig. 9, observations of Arctic Ocean domain-

averaged monthly water paths and surface down-

welling radiation (black) are shown together with ERA-I

reanalysis averages over the observation period of 2007–

10 as a polar plot. Both datasets agree on an increase

(decrease) in LWP (IWP) as the season progresses.

However, compared to the observations during March

through May (Figs. 9a–c), it is apparent that the re-

analysis underestimates both the liquid and ice water

paths by 10 to 25gm22. The inability to properly partition

cloud phase is a general problem with reanalysis and

climate models, particularly where cloud liquid conden-

sate is artificially diagnosed as ice (Karlsson and Svensson

2013; Pithan et al. 2014; Sotiropoulou et al. 2016; Lenaerts

et al. 2017).

Since the downwelling radiative fluxes at the surface

are critically determined by the cloud properties

FIG. 9. Polar plot comparison between Arctic Ocean domain-averaged cloud liquid water

path [LWP, east (gm22)], cloud ice water path [IWP, north (gm22)], surface downwelling

longwave [LWD, west (Wm22)] radiation, and surface downwelling shortwave [SWD, south

(Wm22)] radiation for CloudSat–CALIPSO observations (black; see section 2) and ERA-I

(red), for (a) March, (b) April, (c) May, and (d) June. Concentric radial lines represent the

water path and surface radiative flux values. Note that all LWD and SWD values [except

SWD in (a)] are scaled by a factor 1021 to enable the presentation of all the variables on the

same plot.
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overlying it, the underestimation of cloud water path

should therefore impact the surface radiation in op-

posing ways: a reduction in cloud water 1) should lead to

less shortwave reflected to space resulting in over-

estimated SWD and 2) at the same time should reduce

the longwave absorption and reemission to the surface,

resulting in underestimated LWD. The average values

in Fig. 9 suggest the opposite. Whereas reanalysis and

observations agree on the LWD to within a few Wm22,

the reanalysis SWD indicates an increasing negative bias

with each passingmonth, from210 to.240Wm22. For

March and April, these surface radiation biases are

likely a caveat of ERA-I’s overabundance of clouds over

the Arctic Ocean (Fig. 7), which regardless of their

water content would enhance (decrease) the down-

welling longwave (shortwave) radiation reaching the

surface relative to the observations, indicating more

cloud-free sky fraction. For May and June, when aver-

age cloud fractional occurrence is similar between ob-

servations and reanalysis (Fig. 7), the causes for

agreement in LWD and disagreement in SWD are less

obvious.

Here, the low bias in ERA-I LWP for all spring

months, as well as its potential implications for LWD

anomalies during LIYs and HIYs, is examined. Table 1

shows the detrended, domain-averaged LWP, LWD,

and SWD anomalies for the spring/early summer

months for LIYs and HIYs. Typically LWP anomalies

are positive during LIYs, and SWD anomalies follow

the trend of increased LWP resulting in more reflective

clouds, leading to negative SWD anomalies during

LIYs ranging from 20.31 to 22.53Wm22. In terms of

LWD, positive anomalies in LWP introduce an in-

crease in the cloud emissivity, which results in positive

LWD anomalies that range from 0.43 to 3.64Wm22.

The sign and magnitude of these LWD anomalies for

LIYs agree well with previous studies examining the

role of anomalous radiation preconditioning the spring

sea ice for subsequent ice melt anomalies through

summer (Kapsch et al. 2013; Mortin et al. 2016; Cao

et al. 2017).

However, these anomalies in LWP and their impact

on cloud emissivity must be put into the context of the

background LWP state. Cloud longwave emissivity («) is

exponentially dependent on the amount of LWP, fol-

lowing the relationship in Stephens (1978):

«5 12 e (2a3LWP) , (2)

where a is the mass absorption coefficient (20.158m2g21;

Stephens 1978). The black curve in Fig. 10a shows the

exponential increase in emissivity with cloud LWP,

which approaches an asymptote near unity (blackbody

emitter) near an LWP value of 35 gm22 (Stephens

1978; Shupe and Intrieri 2004; Sedlar et al. 2011). Su-

perimposed on Fig. 10a are lines indicating the monthly

domain-averaged LWP values from ERA-I for HIYs

(dashed) and LIYs (solid), as well as the domain-

averaged range of LWP for March through June from

CloudSat–CALIPSO observations (gray shaded re-

gion). The relatively large underestimation of LWP in

ERA-I relative to observed LWP range places the

cloud emissivity values for ERA-I into a very dynamic

emissivity range; the observed range of LWPs instead

consist of a sufficient amount of liquid condensate such

that emissivity values for all months are generally at or

very near a value of unity.

To examine the impact of LWP and potential emis-

sivity biases in ERA-I clouds, fluxes of longwave radi-

ation are estimated using the calculated emissivities

from Eq. (2) through the Stefan–Boltzmann relation:

LWD5 «3s3T4 , (3)

where s is the Stefan–Boltzmann constant, and T is the

cloud emission temperature. LWD fluxes are calculated

using « computed from the monthly LIY and HIY av-

eraged LWP, across a range of emission temperatures

from 2308 to 178C. Figure 10b show the anomalies in

LWD for LIYs2HIYs. For March and April (magenta

and yellow), small changes in LWP (,2 gm22) between

LIYs and HIYs cause dramatic changes in «, resulting in

large anomalies in LWD ranging from 12 to over

30Wm22 depending on emission temperature. The ab-

solute increase in LWP for both LIYs and HIYs during

May (green) reduces the difference in « and corre-

spondingly the anomalies in LWD are reduced to be-

tween 2 and 3Wm22. By June (brown), LWPs are well

within the blackbody emissivity range, resulting in no

difference in corresponding LWD between LIYs and

HIYs. The observed range of emissivities generally falls

between the estimates for May and June in ERA-I

(Fig. 10a, gray shading). This suggests that actual

domain-averaged LWD anomalies between LIYs and

TABLE 1. Monthly detrended anomalies in ERA-I Arctic Ocean

domain-averaged cloud liquid water path (LWP) and surface

downwelling longwave (LWD) and shortwave (SWD) radiation for

March, April, May, and June. Monthly anomalies are shown LIYs

and HIYs (see text).

LWP (gm22) LWD (Wm22) SWD (Wm22)

Month LIY HIY LIY HIY LIY HIY

March 0.35 20.61 1.46 22.14 20.31 0.54

April 0.85 20.49 3.64 20.70 21.54 1.16

May 20.32 21.01 0.43 21.21 2.31 20.30

June 2.78 21.89 2.44 22.96 22.53 2.81
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HIYs should lie between the anomalous LWD fluxes

estimated forMay and June in Fig. 10b. Thus, the overall

lack of LWP in ERA-I from March to May leads to an

atmospheric state that is overly sensitive to small

anomalies in LWP. The anomalies in LWD realized in

ERA-I during these months are therefore likely over-

estimated in the reanalysis.

4. Discussion and conclusions

This paper explores the capacity of the state of the

ERA-I reanalysis system relative to state-of-the-art

spaceborne observing platforms in representing absor-

bed shortwave radiation, and the mechanisms that im-

pact shortwave radiation, within the Arctic Ocean

climate system during spring. A number of recent

studies have identified key anomalies in atmospheric

dynamic regimes and radiative fluxes during winter and

spring that have been evaluated as critical mechanisms

for sea ice preconditioning for the seasonal summer ice

melt (Graversen et al. 2011; Sedlar andDevasthale 2012;

Kapsch et al. 2013, 2014; Choi et al. 2014; Liu and Key

2014; Mortin et al. 2016; Cao et al. 2017). The majority

of these studies have highlighted the role of positive

anomalies in downwelling longwave radiation over

the sea ice during spring, which effectively limits the

amount of sea ice growth during this season, raises

surface skin temperatures, and can contribute to ear-

lier onset of ice melt during late spring. Results by

Choi et al. (2014), Schröder et al. (2014), and

Kashiwase et al. (2017) have found that anomalies in

shortwave radiation may also be a critical component

of sea ice preconditioning, even during spring and

early summer when ice coverage is large and sun an-

gles are low.

Direct observations of ASR from the CERES satellite

have revealed that during spring of LIYs, anomalous

shortwave radiation is absorbed within the Arctic cli-

mate system.Detrended anomalies integrated across the

Arctic Ocean domain increase from ;0.3Wm22 in

March to;2Wm22 byMay, and during June anomalies

surpass 6.5Wm22. Corresponding LIY ASR anomalies

in ERA-I are weaker, being slightly negative during

March, increasing through May up to ;1Wm22, but

FIG. 10. (a) Theoretical cloud emissivity («) as a function of LWP (gm22) computed from

Eq. (2) (black). Vertical lines indicate the HIY (dashed colored lines) and LIY (solid colored

lines) domain-averaged LWP values from ERA-I for March (purple), April (yellow), May

(green), and June (brown). The corresponding range of LWP for March through June from

the CloudSat–CALIPSO observations is shaded in gray. (b) ERA-I LWD anomalies [esti-

mated from the Stefan–Boltzmann relationship, Eq. (3), LIY 2 HIY] emerging due to

« differences for LIYs and HIYs in (a), are shown as a function of emission temperature

(K) for each month.
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being negative again (21.5Wm22) in June. Contrasting

ASR anomalies between LIYs and HIYs leads to even

larger differences, which suggests a systematic shift in

spring atmospheric and sea ice properties that modu-

lates the extent, or lack of, shortwave radiation pre-

conditioning. However, in ERA-I the differences in

ASR anomalies between LIYs and HIYs are generally

weaker, primarily because the variability in processes

relevant for ASR anomalies is smaller between the

subsets of LIYs and HIYs (see reduced ERA-I HIY

ASR anomalies relative to CERES in Fig. 3). A theo-

retical estimate of the role of anomalous ASR on sea ice

thickness changes can be estimated (Thorndike 1992),

whereby the domain-averaged monthly anomalous flux

difference (LIY 2 HIY) is multiplied by the latent heat

of fusion (334.4 kJ kg21) and an assumed sea ice density

of 917kgm23. From these estimates, the observed ASR

anomalies for March through May can potentially re-

duce ice thickness by 3.5 cm, compared to 1.4 cm for

ERA-I. This thickness change is likely manifested as

additional surface melt as the majority of the Arctic is

still ice covered in spring. In June alone, the observed

anomalous ASR can theoretically add an additional

10 cm of ice melt, compared to20.6 cm (ice growth) for

ERA-I.

While these integrated fluxes and theoretical ice

thickness changes appear small, regionally the impact

of ASR anomalies during spring is often much larger. It

has been shown that the largest differences between

observations and reanalysis in ASR tend to occur near

the coasts around the eastern Arctic continents and

corresponding seas, as well as across the high-latitude

central Arctic Ocean ice pack. Significant interannual

variability in the ASR anomaly locations is present.

This variability can negatively impact the extent of how

effective preconditioning can be, since preconditioning

is a cumulative concept that is dependent upon the

extent and magnitude of anomalous forcing from pre-

vious months. Furthermore, this relatively large year-

to-year variability is likely to be missed by examining

the average, or composite, of HIY or LIY months to-

gether (see Fig. 5).

Observations of detrended surface albedo and ASR

anomalies tend to show stronger and broader regions of

negative covariance within the seas north of the Eur-

asian continent, and north toward the central Arctic

Ocean, compared with ERA-I. Linear regression of

ASR with surface albedo further indicates that the

covarying anomalies are cumulative from April onward

to June, pointing toward a shortwave preconditioning

mechanism that is potentially realized during spring.

The dominance of negative covariance hotspots observed

near the southern edge of the domain is consistent

with the region where Kashiwase et al. (2017) propose

that enhanced ice divergence and increased open wa-

ter fraction may be active; increased shortwave radi-

ation absorption and an enhancement of lateral and

basal ice melt may further contribute to shortwave sea

ice preconditioning. This process, if active, appears to

be mitigated in ERA-I, potentially by biases in the

climatological time-variant sea ice albedo, or in the

cloud cover variability during the late spring and

early summer.

It is evident that longwave radiation from clouds and

water vapor is a critical preconditioning mechanism

during spring. Anomalies in LWD will modify the sea

ice pack, and these modifications can then be acted

upon by shortwave radiation. However, these modifi-

cations make it difficult to separate preconditioning

effects solely due to shortwave radiation, as it becomes

more a matter of timing for the respective anomalies

(Cox et al. 2016). However, corroborating results from

Lenaerts et al. (2017), it was found that ERA-I has a

tendency to underestimate the amount of cloud liquid

water path, especially during spring (Fig. 10). The

lower liquid water paths causes these clouds to exhibit

graybody emissivity properties, such that small changes

in liquid water path produce large changes in emissiv-

ity; the observations during spring were generally

within an emissivity range near its asymptote of unity.

The large increases in anomalous LWD for relatively

small cloud water path increases found in ERA-I are

thus likely overestimated. Systematically, the relative

strength of monthly LWD anomalies due to clouds in

spring for LIYs reported in Kapsch et al. (2013) and

Mortin et al. (2016) are likely biased toward the

high end.

The observations analyzed in this study indicate that

shortwave radiation may be an effective forcing

mechanism contributing to springtime precondition-

ing of Arctic sea ice. While the general signal of

shortwave radiation anomalies is broadly consistent in

ERA-I, the regional extent and magnitude of this

process differ from observations as a result of biases in

surface albedo, cloud fraction, and potentially cloud

microphysics. As ice extent and volume continue to

decrease in the future, the role of ASR during spring

may become even more important in preconditioning

the ice; potentially further exacerbating seasonal

Arctic ice melt.
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